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Why FPGA?
• Everything works in parallel
• The latency is known to the

clock cycle
• Easy interaction with external

hardware
• It’s fun!
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Some Hardware Primitives
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Boolean Logic
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Math
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enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}
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Recap so Far
• Hardware is physical primitives inside a chip
• Hardware description selects components and how to

connect them
• Programming looks similar
• But: Everything is done in parallel
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Dealing with state
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Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}
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Counter
entity-cntr_max(
--clk: clock, rst: bool,
  a: int<20>
--max: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}
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Counter
entity-cntr_max(
--clk: clock, rst: bool,
  a: int<20>
--max: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) =
    if sum == max {
      0
    } else {
      trunc(sum+1)
    };
  sum
}
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Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}
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Inlined
entity main(clk: clock, rst: bool) -> int<20> {
  let max = 4;
  reg(clk) fast_count reset(rst: 0) =
    if fast_count == max { 0 } else { trunc(fast_count + 1) };

  let tick = fast_count == max;

  reg(clk) seconds reset(rst: 0) =
    if tick {trunc(seconds + 1)} else {seconds};

  seconds
}
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We have a very limited programming model!
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We have a very limited programming model!

• Compute new value of all registers using current values
• Update registers simultaneously

No loops, no conditional execution etc.
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One more example:

A dot moves along a line. Press a button when it is in the
middle
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In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}
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In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

Loops kind of encode state
• Menu
• Game

And associated state
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In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}
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Compilation and Performance
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Basic Building Blocks
Look Up Tables (LUT)
• Programmable to arbitrary 4 bit → 1 bit functions
• Thousands per FPGA
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Basic Building Blocks
Look Up Tables (LUT)
• Programmable to arbitrary 4 bit → 1 bit functions
• Thousands per FPGA

Digital Signal Processing (DSP) blocks
• Multiplier and Adder
• Tens to hundreds per FPGA

Memories
• Blocks of memory in configurable chunks
• Kilobits to megabits per FPGA
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Compilation

fn add_three(a, b, c,) {
  a + b + c
}
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• Circuit Board
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• Circuit Board
• Blood
• Sacrifice

• Preferably a goat
• Rabbit works in a pinch
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• Circuit Board
• Blood
• Sacrifice

• Preferably a goat
• Rabbit works in a pinch

• Cat ears
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Synthesis
fn add_three(a, b, c,) {
  a + b + c
}

List of “nets”

2 adders. A should connect to
input 1 of adder 1…
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Place and Route
List of “nets”

2 adders. A should connect to
input 1 of adder 1…

Placement selects a physical
location for each component

Routing selects how to connect
them
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Software performance is simple
• Only 1 metric: runtime
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Software performance is simple
• Only 1 metric: runtime
• Runtime degrades slowly
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Resource Usage
• Each computation you

perform takes some basic
cells
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Resource Usage
• Each computation you

perform takes some basic
cells

• Very binary transition from
ok to bad

• You still pay for unused
components
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Clock Frequency
• (Mosty) Fixed frequency clock. 10 − 200 MHz
• Static timing analysis
• Another pass/fail metric
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Performance
[INFO] Place and route maximum frequencies:
clk$SB_IO_IN_$glb_clk: 30.5 MHz (target: 12 MHz) <- Is the design fast
enough?
[INFO] Place and route components:
ICESTORM_LC: 181/1280 (14.1%) <- LUTs
ICESTORM_PLL: 0/1      (0.0%)
ICESTORM_RAM: 0/16     (0.0%)
SB_GB: 2/8            (25.0%)
SB_IO: 2/112           (1.8%)
SB_WARMBOOT: 0/1       (0.0%)
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Performance
[INFO] Place and route maximum frequencies:
$glbnet$_e_880[0]: 231.3 MHz (target: 200 MHz) <- Is the design fast enough?
[INFO] Place and route components:
ALU54B: 0/78              (0.0%)
CLKDIVF: 0/4              (0.0%)
DCCA: 6/56               (10.7%)
DCSC: 0/2                 (0.0%)
...
TRELLIS_COMB: 9193/83640 (11.0%) <- LUTs
TRELLIS_ECLKBUF: 0/8      (0.0%)
TRELLIS_FF: 3829/83640    (4.6%) <- Registers
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WS2812b Addressable RGB LEDs
Gustav Sörnäs
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What is WS2812b?

• Addressable RGB LEDs
• Individually controllable

• Mounted on a PCB, or on a strip, or in a matrix, or flying free
• Connected in series
• Many names, same protocol

• WS2811, 2812, 2812b, 2813
• APA104, 106
• SK6812
• NeoPixel
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What is it used for?

Anytime bright lights are fun. (Meaning, wherever you want!)
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What is it used for?

Anytime bright lights are fun. (Meaning, wherever you want!)

• Keyboard backlight and underglow
• Decoration: Taped to anything, anywhere
• Matrix: text, graphics, clocks
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What are its issues?

• Connected in series - one break is enough to stop
transmission
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What are its issues?

• Connected in series - one break is enough to stop
transmission

• Power delivery
• Operating frequency
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Why do we want it in hardware?

800 KHz operating frequency means a challenge for both:
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Why do we want it in hardware?

800 KHz operating frequency means a challenge for both:
• Software implementation in a microcontroller (bit-banging)

• Slow clock
• Dependent on clock speed

• General purpose CPUs (without a real-time operating system)

36



How does the protocol work?

Recall that LEDs are connected serially.
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Keyboard example:
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Send a stream of colors. Every LED reads the first and sends
the rest along.
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Pixel data is sent as… checks notes
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Pixel data is sent as… checks notes

GRB???

40
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Bits are different lengths of
high+low, not simple low/high
once per clock cycle.

Reset marks start of next data
cycle. (RET is reset, not return.)

42



Protocol recap
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Protocol recap

• 24 bits per LED
• Bits are have a low pulse and high pulse, with different

lengths signifying 0/1
• Send LED data in the same order it should be on the strip
• Reset between every transmission

43



How is the project setup?
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How is the project setup?
entity user_code(clk: clock, rst: bool, timing: Timing) -> bool {
  let state: OutputControl<int<4>> = inst state_gen(clk, rst, 3, timing);
  //                       ~~~~~~                             |
  //                                         we want 3 leds --+

  let with_color = match state {
    OutputControl::Ret => OutputControl::Ret,
    OutputControl::Led$(payload: led_num, bit, duration) => {
      let color = Color(0, 20, 0); // everything is green

      OutputControl::Led$(payload: color, bit, duration)
    }
  };

  output_gen(with_color, t)
}
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Available FPGAs
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• Go Board

• iCE40 HX1K
• 1 280 LUTs
• 25 MHz clock
• 1 PMOD (8 pins)
• 4 buttons
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Available FPGAs
• Go Board

• iCE40 HX1K
• 1 280 LUTs
• 25 MHz clock
• 1 PMOD (8 pins)
• 4 buttons
• UART interface

• ECPIX-5
• ECP5 45F
• 45 000 LUTs
• 100 MHz clock
• 8 PMOD (64 pins)
• External buttons
• UART interface

• ULX3S
• ECP5 85F
• 84 000 LUTs
• 25 MHz clock
• 28 pins
• 6 buttons
• UART interface

Watch out for different clock speeds when dealing with
counters.

For now, choose one clock speed and stick to it.
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Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.
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Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.

1. Install Swim:
cargo install --git https://gitlab.com/spade-lang/swim

2. Clone the WS2812 repository:
git clone https://gitlab.com/lithekod/hardware/fpga-ws2812

3. Change directory and build:
cd fpga-ws2812
swim build

https://lithekod.se/hardware/fpga-evening
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How do you get the code to the FPGA?

In a real project, swim upload runs synthesis, pnr, and upload.
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Today, me and Frans will keep the FPGAs by our computers,
since we only have a few.
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How do you get the code to the FPGA?

In a real project, swim upload runs synthesis, pnr, and upload.

Today, me and Frans will keep the FPGAs by our computers,
since we only have a few.

Because I didn’t think about this earlier, you will probably have
to send the code to us using e.g. https://paste.rs/web.
(Sorry!)

Please ask if something is unclear.
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Some things to do

Roughly in increasing order of difficulty.
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Some things to do

Roughly in increasing order of difficulty.

1. Change the color of all three LEDs to yellow.
2. Control 10 LEDs.
3. Have different colors for all LEDs. Hint: arrays.
4. Animate in some way. For example, toggle on/off every

second. Hint: counters, array offsets.
5. React to pressing buttons on the FPGA. (You will need to

make some more changes in the same file.)
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Some more things to do

Please tell us if you want to do any of these!
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Some more things to do

Please tell us if you want to do any of these!

6. Control the FPGA from your computer.
• All FPGAs can be communicated with via UART. We have a

UART implementation in Spade somewhere on GitLab.
7. Control the FPGA from a microcontroller.

• We have Arduino Uno, ESP8266 and Raspberry Pi Pico
(and hopefully enough level-shifters).

• Hint: SPI.
8. Use an RFID reader to draw a unique color pattern.

• We only have one reader. Maybe do this one as a group.
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Closing remarks
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