
FPGAs for Programmers
Frans Skarman



fn add_three(a, b, c) {
    return a + b + c;
}

2



fn add_three(a, b, c) {
    return a + b + c;
}

load r1, *a
load r2, *b
add r3, r1, r2
load r4, *c
add r4, r3, r4
ret r4

2



fn add_three(a, b, c) {
    return a + b + c;
}

load r1, *a
load r2, *b
add r3, r1, r2
load r4, *c
add r4, r3, r4
ret r4

2



fn add_three(a, b, c) {
    return a + b + c;
}

load r1, *a
load r2, *b
add r3, r1, r2
load r4, *c
add r4, r3, r4
ret r4

2



fn add_three(a, b, c) {
    return a + b + c;
}

load r1, *a
load r2, *b
add r3, r1, r2
load r4, *c
add r4, r3, r4
ret r4

2



fn add_three(a, b, c) {
    return a + b + c;
}

load r1, *a
load r2, *b
add r3, r1, r2
load r4, *c
add r4, r3, r4
ret r4

2



fn add_three(a, b, c) {
    return a + b + c;
}

load r1, *a
load r2, *b
add r3, r1, r2
load r4, *c
add r4, r3, r4
ret r4

2



3



3



3



3



Why FPGA?
• Everything works in parallel

4



Why FPGA?
• Everything works in parallel
• The latency is known to the

clock cycle

4



Why FPGA?
• Everything works in parallel
• The latency is known to the

clock cycle
• Easy interaction with external

hardware

4



Why FPGA?
• Everything works in parallel
• The latency is known to the

clock cycle
• Easy interaction with external

hardware
• It’s fun!

4



Some Hardware Primitives

5



Boolean Logic

6



Boolean Logic

6



Math

7



Math

7



Math

7



Math

7



8



8



8



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



enum Op {
  Add, Sub, Mul
}

fn alu(op: Op, a: int<32>, b: int<32>)
  -> int<32>
{
--match op {
----Op::Add => a + b,
----Op::Sub => a - b,
----Op::Mul => a * b
  }
}

9



Recap so Far
• Hardware is physical primitives inside a chip
• Hardware description selects components and how to

connect them
• Programming looks similar
• But: Everything is done in parallel

10



Dealing with state

11



12



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr(
--clk: clock, rst: bool,
  a: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr_max(
--clk: clock, rst: bool,
  a: int<20>
--max: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) = trunc(a + sum);
  sum
}

13



Counter
entity-cntr_max(
--clk: clock, rst: bool,
  a: int<20>
--max: int<20>
) -> int<20> {
--reg(clk) sum reset(rst: 0) =
    if sum == max {
      0
    } else {
      trunc(sum+1)
    };
  sum
}

13



Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}

14



Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}

14



Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}

14



Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}

14



Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}

14



Cascaded counters
entity main(clk: clock, rst: bool) -> int<20> {
----let max = 4;
    let fast_count = inst cntr_max(clk, rst, 1, max);

----let tick = fast_count == max;

    let slow_count = inst cntr(clk, rst, if tick {1} else {0});

----slow_count
}

14



Inlined
entity main(clk: clock, rst: bool) -> int<20> {
  let max = 4;
  reg(clk) fast_count reset(rst: 0) =
    if fast_count == max { 0 } else { trunc(fast_count + 1) };

  let tick = fast_count == max;

  reg(clk) seconds reset(rst: 0) =
    if tick {trunc(seconds + 1)} else {seconds};

  seconds
}

15



We have a very limited programming model!

16



We have a very limited programming model!

• Compute new value of all registers using current values

16



We have a very limited programming model!

• Compute new value of all registers using current values
• Update registers simultaneously

16



We have a very limited programming model!

• Compute new value of all registers using current values
• Update registers simultaneously

No loops, no conditional execution etc.

16



One more example:

A dot moves along a line. Press a button when it is in the
middle

17



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

Loops kind of encode state

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

Loops kind of encode state
• Menu
•

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

Loops kind of encode state
• Menu
• Game

18



In Software
fn game(input: bool) {
--let won_last = false;
  loop {
----while !button {}

----let x = 0;
----loop {
      if button && x == 128 {
        won_last = true;
        break;
      }
      else if button {
        won_last = false;
        break;
      }
      x += 1;
    }
  }
}

Loops kind of encode state
• Menu
• Game

And associated state

18



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



In Hardware
enum State {
  Menu{won_last: bool},
  Play{x: int<8>}
}
entity game(
  clk: clock, rst: bool, button: bool
) -> State {
--reg(clk) state reset(rst: Menu(false)) =
    match (state, button) {
------(Menu(won_last), false) => Menu(won_last),
------(Menu(_),        true) => Play(0),
------(Play(128),      true) => Menu(true)
------(Play(_),        true) => Menu(false)
------(Play(x),        _) => Play(trunc(x + 1))
    };
  state
}

19



Compilation and Performance

20



Basic Building Blocks
Look Up Tables (LUT)
• Programmable to arbitrary 4 bit → 1 bit functions
• Thousands per FPGA

21



Basic Building Blocks
Look Up Tables (LUT)
• Programmable to arbitrary 4 bit → 1 bit functions
• Thousands per FPGA

Digital Signal Processing (DSP) blocks
• Multiplier and Adder
• Tens to hundreds per FPGA

21



Basic Building Blocks
Look Up Tables (LUT)
• Programmable to arbitrary 4 bit → 1 bit functions
• Thousands per FPGA

Digital Signal Processing (DSP) blocks
• Multiplier and Adder
• Tens to hundreds per FPGA

Memories
• Blocks of memory in configurable chunks
• Kilobits to megabits per FPGA

21



Compilation

fn add_three(a, b, c,) {
  a + b + c
}

22



• Circuit Board

23



• Circuit Board
• Blood

23



• Circuit Board
• Blood
• Sacrifice

• Preferably a goat
• Rabbit works in a pinch

23



• Circuit Board
• Blood
• Sacrifice

• Preferably a goat
• Rabbit works in a pinch

• Cat ears

23



Synthesis
fn add_three(a, b, c,) {
  a + b + c
}

List of “nets”

2 adders. A should connect to
input 1 of adder 1…

24



Place and Route
List of “nets”

2 adders. A should connect to
input 1 of adder 1…

Placement selects a physical
location for each component

Routing selects how to connect
them

25



Software performance is simple
• Only 1 metric: runtime

26



Software performance is simple
• Only 1 metric: runtime
• Runtime degrades slowly

26



Resource Usage
• Each computation you

perform takes some basic
cells

27



Resource Usage
• Each computation you

perform takes some basic
cells

• Very binary transition from
ok to bad

27



Resource Usage
• Each computation you

perform takes some basic
cells

• Very binary transition from
ok to bad

• You still pay for unused
components

27



Clock Frequency

28



Clock Frequency
• (Mosty) Fixed frequency clock. 10 − 200 MHz

29



Clock Frequency
• (Mosty) Fixed frequency clock. 10 − 200 MHz
• Static timing analysis

29



Clock Frequency
• (Mosty) Fixed frequency clock. 10 − 200 MHz
• Static timing analysis
• Another pass/fail metric

29



Performance
[INFO] Place and route maximum frequencies:
clk$SB_IO_IN_$glb_clk: 30.5 MHz (target: 12 MHz) <- Is the design fast
enough?
[INFO] Place and route components:
ICESTORM_LC: 181/1280 (14.1%) <- LUTs
ICESTORM_PLL: 0/1      (0.0%)
ICESTORM_RAM: 0/16     (0.0%)
SB_GB: 2/8            (25.0%)
SB_IO: 2/112           (1.8%)
SB_WARMBOOT: 0/1       (0.0%)

30



Performance
[INFO] Place and route maximum frequencies:
$glbnet$_e_880[0]: 231.3 MHz (target: 200 MHz) <- Is the design fast enough?
[INFO] Place and route components:
ALU54B: 0/78              (0.0%)
CLKDIVF: 0/4              (0.0%)
DCCA: 6/56               (10.7%)
DCSC: 0/2                 (0.0%)
...
TRELLIS_COMB: 9193/83640 (11.0%) <- LUTs
TRELLIS_ECLKBUF: 0/8      (0.0%)
TRELLIS_FF: 3829/83640    (4.6%) <- Registers

31



WS2812b Addressable RGB LEDs
Gustav Sörnäs



What is WS2812b?

33



What is WS2812b?

• Addressable RGB LEDs
• Individually controllable

33



What is WS2812b?

• Addressable RGB LEDs
• Individually controllable

• Mounted on a PCB, or on a strip, or in a matrix, or flying free

33



What is WS2812b?

• Addressable RGB LEDs
• Individually controllable

• Mounted on a PCB, or on a strip, or in a matrix, or flying free
• Connected in series

33



What is WS2812b?

• Addressable RGB LEDs
• Individually controllable

• Mounted on a PCB, or on a strip, or in a matrix, or flying free
• Connected in series
• Many names, same protocol

• WS2811, 2812, 2812b, 2813
• APA104, 106
• SK6812
• NeoPixel

33



What is it used for?

Anytime bright lights are fun. (Meaning, wherever you want!)

34



What is it used for?

Anytime bright lights are fun. (Meaning, wherever you want!)

• Keyboard backlight and underglow

34



What is it used for?

Anytime bright lights are fun. (Meaning, wherever you want!)

• Keyboard backlight and underglow
• Decoration: Taped to anything, anywhere

34



What is it used for?

Anytime bright lights are fun. (Meaning, wherever you want!)

• Keyboard backlight and underglow
• Decoration: Taped to anything, anywhere
• Matrix: text, graphics, clocks

34



What are its issues?

• Connected in series - one break is enough to stop
transmission

35



What are its issues?

• Connected in series - one break is enough to stop
transmission

• Power delivery

35



What are its issues?

• Connected in series - one break is enough to stop
transmission

• Power delivery
• Operating frequency

35



Why do we want it in hardware?

800 KHz operating frequency means a challenge for both:

36



Why do we want it in hardware?

800 KHz operating frequency means a challenge for both:
• Software implementation in a microcontroller (bit-banging)

• Slow clock
• Dependent on clock speed

36



Why do we want it in hardware?

800 KHz operating frequency means a challenge for both:
• Software implementation in a microcontroller (bit-banging)

• Slow clock
• Dependent on clock speed

• General purpose CPUs (without a real-time operating system)

36



How does the protocol work?

Recall that LEDs are connected serially.

37



Keyboard example:

38



Send a stream of colors. Every LED reads the first and sends
the rest along.

39



Pixel data is sent as… checks notes

40



Pixel data is sent as… checks notes

GRB???

40



41



Bits are different lengths of
high+low, not simple low/high
once per clock cycle.

Reset marks start of next data
cycle. (RET is reset, not return.)

42



Protocol recap

43



Protocol recap

• 24 bits per LED

43



Protocol recap

• 24 bits per LED
• Bits are have a low pulse and high pulse, with different

lengths signifying 0/1

43



Protocol recap

• 24 bits per LED
• Bits are have a low pulse and high pulse, with different

lengths signifying 0/1
• Send LED data in the same order it should be on the strip

43



Protocol recap

• 24 bits per LED
• Bits are have a low pulse and high pulse, with different

lengths signifying 0/1
• Send LED data in the same order it should be on the strip
• Reset between every transmission

43



How is the project setup?

44



How is the project setup?
entity user_code(clk: clock, rst: bool, timing: Timing) -> bool {
  let state: OutputControl<int<4>> = inst state_gen(clk, rst, 3, timing);
  //                       ~~~~~~                             |
  //                                         we want 3 leds --+

  let with_color = match state {
    OutputControl::Ret => OutputControl::Ret,
    OutputControl::Led$(payload: led_num, bit, duration) => {
      let color = Color(0, 20, 0); // everything is green

      OutputControl::Led$(payload: color, bit, duration)
    }
  };

  output_gen(with_color, t)
}

45



Available FPGAs

46



Available FPGAs
• Go Board

• iCE40 HX1K
• 1 280 LUTs
• 25 MHz clock
• 1 PMOD (8 pins)
• 4 buttons
• UART interface

46



Available FPGAs
• Go Board

• iCE40 HX1K
• 1 280 LUTs
• 25 MHz clock
• 1 PMOD (8 pins)
• 4 buttons
• UART interface

• ECPIX-5
• ECP5 45F
• 45 000 LUTs
• 100 MHz clock
• 8 PMOD (64 pins)
• External buttons
• UART interface

46



Available FPGAs
• Go Board

• iCE40 HX1K
• 1 280 LUTs
• 25 MHz clock
• 1 PMOD (8 pins)
• 4 buttons
• UART interface

• ECPIX-5
• ECP5 45F
• 45 000 LUTs
• 100 MHz clock
• 8 PMOD (64 pins)
• External buttons
• UART interface

• ULX3S
• ECP5 85F
• 84 000 LUTs
• 25 MHz clock
• 28 pins
• 6 buttons
• UART interface

46



Available FPGAs
• Go Board

• iCE40 HX1K
• 1 280 LUTs
• 25 MHz clock
• 1 PMOD (8 pins)
• 4 buttons
• UART interface

• ECPIX-5
• ECP5 45F
• 45 000 LUTs
• 100 MHz clock
• 8 PMOD (64 pins)
• External buttons
• UART interface

• ULX3S
• ECP5 85F
• 84 000 LUTs
• 25 MHz clock
• 28 pins
• 6 buttons
• UART interface

Watch out for different clock speeds when dealing with
counters.

For now, choose one clock speed and stick to it.

46



Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.

47



Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.

1. Install Swim:
cargo install --git https://gitlab.com/spade-lang/swim

47



Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.

1. Install Swim:
cargo install --git https://gitlab.com/spade-lang/swim

2. Clone the WS2812 repository:
git clone https://gitlab.com/lithekod/hardware/fpga-ws2812

47



Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.

1. Install Swim:
cargo install --git https://gitlab.com/spade-lang/swim

2. Clone the WS2812 repository:
git clone https://gitlab.com/lithekod/hardware/fpga-ws2812

3. Change directory and build:
cd fpga-ws2812
swim build

47



Installing and running Spade
Spade is the compiler, Swim is the build system.

Swim takes care of the different FPGAs we have.

1. Install Swim:
cargo install --git https://gitlab.com/spade-lang/swim

2. Clone the WS2812 repository:
git clone https://gitlab.com/lithekod/hardware/fpga-ws2812

3. Change directory and build:
cd fpga-ws2812
swim build

https://lithekod.se/hardware/fpga-evening

47



How do you get the code to the FPGA?

In a real project, swim upload runs synthesis, pnr, and upload.

48



How do you get the code to the FPGA?

In a real project, swim upload runs synthesis, pnr, and upload.

Today, me and Frans will keep the FPGAs by our computers,
since we only have a few.

48



How do you get the code to the FPGA?

In a real project, swim upload runs synthesis, pnr, and upload.

Today, me and Frans will keep the FPGAs by our computers,
since we only have a few.

Because I didn’t think about this earlier, you will probably have
to send the code to us using e.g. https://paste.rs/web.
(Sorry!)

Please ask if something is unclear.

48



Some things to do

Roughly in increasing order of difficulty.

49



Some things to do

Roughly in increasing order of difficulty.

1. Change the color of all three LEDs to yellow.

49



Some things to do

Roughly in increasing order of difficulty.

1. Change the color of all three LEDs to yellow.
2. Control 10 LEDs.

49



Some things to do

Roughly in increasing order of difficulty.

1. Change the color of all three LEDs to yellow.
2. Control 10 LEDs.
3. Have different colors for all LEDs. Hint: arrays.

49



Some things to do

Roughly in increasing order of difficulty.

1. Change the color of all three LEDs to yellow.
2. Control 10 LEDs.
3. Have different colors for all LEDs. Hint: arrays.
4. Animate in some way. For example, toggle on/off every

second. Hint: counters, array offsets.

49



Some things to do

Roughly in increasing order of difficulty.

1. Change the color of all three LEDs to yellow.
2. Control 10 LEDs.
3. Have different colors for all LEDs. Hint: arrays.
4. Animate in some way. For example, toggle on/off every

second. Hint: counters, array offsets.
5. React to pressing buttons on the FPGA. (You will need to

make some more changes in the same file.)

49



Some more things to do

Please tell us if you want to do any of these!

50



Some more things to do

Please tell us if you want to do any of these!

6. Control the FPGA from your computer.
• All FPGAs can be communicated with via UART. We have a

UART implementation in Spade somewhere on GitLab.

50



Some more things to do

Please tell us if you want to do any of these!

6. Control the FPGA from your computer.
• All FPGAs can be communicated with via UART. We have a

UART implementation in Spade somewhere on GitLab.
7. Control the FPGA from a microcontroller.

• We have Arduino Uno, ESP8266 and Raspberry Pi Pico
(and hopefully enough level-shifters).

• Hint: SPI.

50



Some more things to do

Please tell us if you want to do any of these!

6. Control the FPGA from your computer.
• All FPGAs can be communicated with via UART. We have a

UART implementation in Spade somewhere on GitLab.
7. Control the FPGA from a microcontroller.

• We have Arduino Uno, ESP8266 and Raspberry Pi Pico
(and hopefully enough level-shifters).

• Hint: SPI.
8. Use an RFID reader to draw a unique color pattern.

• We only have one reader. Maybe do this one as a group.

50



Closing remarks

51


	Why FPGA?
	Why FPGA?
	Why FPGA?
	Why FPGA?
	Boolean Logic
	Boolean Logic
	Math
	Math
	Math
	Math
	Recap so Far
	Counter
	Counter
	Counter
	Counter
	Counter
	Counter
	Counter
	Counter
	Counter
	Counter
	Cascaded counters
	Cascaded counters
	Cascaded counters
	Cascaded counters
	Cascaded counters
	Cascaded counters
	Inlined
	In Software
	In Software
	In Software
	In Software
	In Software
	In Software
	In Software
	In Software
	In Software
	In Software
	In Hardware
	In Hardware
	In Hardware
	In Hardware
	In Hardware
	In Hardware
	In Hardware
	Basic Building Blocks
	Basic Building Blocks
	Basic Building Blocks
	Compilation
	Synthesis
	Place and Route
	Resource Usage
	Resource Usage
	Resource Usage
	Clock Frequency
	Clock Frequency
	Clock Frequency
	Clock Frequency
	Performance
	Performance
	What is WS2812b?
	What is WS2812b?
	What is WS2812b?
	What is WS2812b?
	What is WS2812b?
	What is it used for?
	What is it used for?
	What is it used for?
	What is it used for?
	What are its issues?
	What are its issues?
	What are its issues?
	Why do we want it in hardware?
	Why do we want it in hardware?
	Why do we want it in hardware?
	How does the protocol work?
	Protocol recap
	Protocol recap
	Protocol recap
	Protocol recap
	Protocol recap
	How is the project setup?
	How is the project setup?
	Available FPGAs
	Available FPGAs
	Available FPGAs
	Available FPGAs
	Available FPGAs
	Installing and running Spade
	Installing and running Spade
	Installing and running Spade
	Installing and running Spade
	Installing and running Spade
	How do you get the code to the FPGA?
	How do you get the code to the FPGA?
	How do you get the code to the FPGA?
	Some things to do
	Some things to do
	Some things to do
	Some things to do
	Some things to do
	Some things to do
	Some more things to do
	Some more things to do
	Some more things to do
	Some more things to do
	Closing remarks

